Explicit formulas for Drinfeld modules and their periods

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periods of Drinfeld modules and local shtukas with complex multiplication

Colmez [Col93] conjectured a product formula for periods of abelian varieties over number fields with complex multiplication and proved it in some cases. His conjecture is equivalent to a formula for the Faltings height of CM abelian varieties in terms of the logarithmic derivatives at s = 0 of certain Artin L-functions. In a series of articles we investigate the analog of Colmez’s theory in th...

متن کامل

Algebraic Independence of Periods and Logarithms of Drinfeld Modules

Let ρ be a Drinfeld A-module with generic characteristic defined over an algebraic function field. We prove that all of the algebraic relations among periods, quasiperiods, and logarithms of algebraic points on ρ are those coming from linear relations induced by endomorphisms of ρ.

متن کامل

Siegel’s Theorem for Drinfeld Modules

We prove a Siegel type statement for finitely generated φsubmodules of Ga under the action of a Drinfeld module φ. This provides a positive answer to a question we asked in a previous paper. We also prove an analog for Drinfeld modules of a theorem of Silverman for nonconstant rational maps of P over a number field.

متن کامل

Integral Points for Drinfeld Modules

We prove that in the backward orbit of a nonpreperiodic (nontorsion) point under the action of a Drinfeld module of generic characteristic there exist at most finitely many points S-integral with respect to another nonpreperiodic point. This provides the answer (in positive characteristic) to a question raised by Sookdeo in [26]. We also prove that for each nontorsion point z there exist at mos...

متن کامل

Periods of Third Kind for Rank 2 Drinfeld Modules and Algebraic Independence of Logarithms

In analogy with the periods of abelian integrals of differentials of third kind for an elliptic curve defined over a number field, we introduce a notion of periods of third kind for a rank 2 Drinfeld Fq[t]-module ρ defined over an algebraic function field and derive explicit formulae for them. When ρ has complex multiplication by a separable extension, we prove the algebraic independence of ρlo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2013

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2012.10.013